1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
| import numpy as np import cv2 import scipy.misc import os
import warnings from argparse import ArgumentParser warnings.filterwarnings("ignore") ALPHA = 0.8 M = 256 Threshold = 10
def build_parser(): parser = ArgumentParser() parser.add_argument('--image', dest = 'img', help = 'input image', metavar = 'INPUT_IMAGE.jpg', required = True) parser.add_argument('--result', dest='res', help='output image', metavar='OUTPUT_IMAGE.jpg', required=True) return parser
def Trans_and_CalcD(H = [],T = []): M = len(H) Tar = np.zeros(M+1) for i in range(M): if H[i] != 0: Tar[T[i]] = H[i] D = 0 for i in range(0,M-1): for j in range(i+1,M): D = D + Tar[i] * Tar[j] * (j - i) return D
def ten(img): height, width = np.shape(img) ''' ix = [-1,0,1 iy = [1,2,1 -2,0,2 0,0,0 -1,0,1] -1,-2,-1] ''' ans = 0 for i in range(1,height-1): for j in range(1,width-1): Sx = img[i-1][j+1] + 2 * img[i][j+1] + img[i+1][j+1] - (img[i-1][j-1] + 2 * img[i][j-1] + img[i+1][j-1]) Sy = img[i-1][j-1] + 2 * img[i-1][j] + img[i-1][j+1] - (img[i+1][j-1] + 2 * img[i+1][j] + img[i+1][j+1]) temp = Sx * Sx + Sy * Sy if temp > Threshold: ans = ans + temp return ans
def glg(img): height,width = np.shape(img) Npix = height * width scipy.misc.imsave('original_img.jpg', img) hist = cv2.calcHist([img], [0], None, [M], [0.0, 255.0]) ''' bins = np.arange(257) item = img[:, :] hist, bins = np.histogram(item, bins) width = 0.7 * (bins[1] - bins[0]) center = (bins[:-1] + bins[1:]) / 2 plt.bar(center, hist, align='center', width=width) plt.show() ''' temp = [0] temp_gray_level = np.zeros(M) cnt = 1 for i in range(M): if hist[i] != 0: temp.append(hist[i]) temp_gray_level[cnt] = i cnt = cnt + 1 n = len(temp) - 1 G = [[0] for i in range(n+2)] gray_level = [[0 for _ in range(n+1)] for __ in range(n+1)] G[n] = temp gray_level[n] = temp_gray_level L = [[0] for i in range(n+2)] R = [[0] for i in range(n+2)] for k in range(M): if hist[k] != 0: L[n].append(k) R[n].append(k) N = np.zeros(n+2).astype(float) T = [[0 for k in range(M+1)] for i in range(n+2)] D = np.zeros(n+2) maxD = 0 Iopt = n - 1
while n >= 3: a = min(G[n][1:n+1]) ia = G[n].index(a) left = True if ia == 1: b = G[n][ia+1] left = False elif ia == n: b = G[n][ia-1] else: if G[n][ia-1] <= G[n][ia+1]: b = G[n][ia-1] left = True else: b = G[n][ia+1] left = False if left: ii = ia - 1 else: ii = ia for i in range(1,ii): G[n-1].append(G[n][i]) gray_level[n-1][i] = gray_level[n][i] G[n-1].append(a+b) gray_level[n-1][ii] = gray_level[n][ii] for i in range(ii+1,n): G[n-1].append(G[n][i+1]) gray_level[n-1][i] = gray_level[n][i+1]
for i in range(1,ii+1): L[n-1].append(L[n][i]) for i in range(ii+1,n): L[n-1].append(L[n][i+1])
for i in range(1,ii): R[n-1].append(R[n][i]) for i in range(ii,n): R[n-1].append(R[n][i+1])
if L[n-1][1] != R[n-1][1]: N[n-1] = (M - 1)/float(n - 1) else: N[n-1] = (M - 1)/float(n - 1 - ALPHA) for k in range(0,M): if k <= L[n-1][1]: T[n - 1][k] = 0 continue if k >= R[n-1][n-1]: T[n-1][k] = M - 1 continue i = 0 for x in range(1,n): if k >= L[n-1][x] and k < R[n-1][x]: i = x if i > 0 and L[n-1][i] != R[n-1][i]: if L[n-1][1] == R[n-1][1]: ans = int((i - ALPHA - (R[n - 1][i] - k) / float(R[n - 1][i] - L[n - 1][i])) * float(N[n - 1]) + 1 + 0.5) T[n - 1][k] = ans else: ans = int((i - (R[n - 1][i] - k) / float(R[n - 1][i] - L[n - 1][i])) * float(N[n - 1]) + 1 + 0.5) T[n - 1][k] = ans elif i > 0 and L[n-1][i] == R[n-1][i]: if L[n-1][1] == R[n-1][1]: T[n - 1][k] =int(((i - ALPHA) * float(N[n - 1])) + 0.5) else: T[n - 1][k] =int((i * float(N[n - 1])) + 0.5) elif k == R[n-1][x]: i = x if L[n-1][1] == R[n-1][1]: T[n - 1][k] = int(((float (i) - ALPHA) * float(N[n - 1])) + 0.5) else: T[n - 1][k] = int((i * float(N[n - 1])) + 0.5) if i == 0: T[n-1][k] = T[n-1][k-1] D[n-1] = Trans_and_CalcD(hist,T[n-1]) if D[n - 1] > maxD: maxD = D[n - 1] Iopt = n - 1 n = n - 1 return T[Iopt],D[Iopt]/(float (Npix) * (Npix - 1))
def main(): parser = build_parser() options = parser.parse_args() if not os.path.isfile(options.img): parser.error("Image %s does not exist.)" % options.network) res = options.res img = cv2.imread(options.img, cv2.IMREAD_GRAYSCALE) Trans,PixDist = glg(img) height, width = np.shape(img) image = np.copy(img) for i in range(0,height): for j in range(0,width): image[i][j] = Trans[img[i][j]] scipy.misc.imsave(res,image) print "The PixDist is %.1lf" %PixDist if __name__ == '__main__': main()
|